Volver

Fotografía ilustrativa del artículo
| 02 Mar 2022

Un sistema basado en enzimas logra convertir CO2 en combustible limpio

Fuente: Agencia SINC

CO2 , combustible , electrolisis , enzimas

Un equipo de la Universidad de Cambridge (Reino Unido) ha desarrollado un método eficaz para convertir el dióxido de carbono en combustibles no contaminantes y sostenibles, sin subproductos ni residuos indeseados.

Los investigadores ya habían demostrado previamente que los catalizadores biológicos, o enzimas, podían producir combustibles de forma limpia, pero con una eficiencia baja.

Sin embargo, en este trabajo se ha conseguido mejorar la eficiencia de la producción de combustible mediante enzimas en un entorno de laboratorio sin desperdiciar energía. Los resultados se recogen en dos artículos relacionados en Nature Chemistry y PNAS.

La mayoría de los métodos para convertir el CO2 en carburantes producen subproductos no deseados, como el hidrógeno. Los científicos pueden alterar las condiciones químicas para minimizar la producción de hidrógeno, pero esto también reduce el rendimiento de la conversión del dióxido de carbono.

La prueba de concepto desarrollada ahora se basa en enzimas aisladas de bacterias para impulsar las reacciones químicas que convierten el CO2 en combustible, un proceso llamado electrólisis.

Sensibilidad de las enzimas a su entorno químico local.

Las enzimas son más eficaces que otros catalizadores, como el oro. Pero a la vez, son muy sensibles a su entorno químico local. Si este entorno no es el adecuado, las enzimas se deshacen y las reacciones químicas se vuelven lentas.

Los investigadores de Cambridge, en colaboración con un equipo de la Universidad Nova de Lisboa, en Portugal, han desarrollado un método para mejorar la eficacia de la electrólisis ajustando las condiciones de la solución para alterar el entorno de las enzimas.

Según explica Esther Edwardes Moore, del departamento de Química Yusuf Hamied de Cambridge y primera autora del artículo, “las enzimas han evolucionado durante millones de años para ser extremadamente eficientes y selectivas, y son excelentes para la producción de combustible porque no hay subproductos no deseados. Pero su sensibilidad plantea varios desafíos”, señala.

“Nuestro método tiene en cuenta esta sensibilidad —agrega— de modo que el entorno local se ajusta a las condiciones de trabajo ideales de la enzima”.

Los autores han utilizado métodos computacionales para diseñar un sistema que mejore la electrólisis del CO2. Con el sistema basado en enzimas, lograron que el nivel de producción de combustible se multiplicara por 18 en laboratorio, en comparación con la solución de referencia actual.

Enzima completa. / Universidad de Cambridge

Para mejorar aún más el entorno local, el equipo demostró cómo dos enzimas pueden trabajar juntas, una produciendo combustible y la otra controlando el entorno. Comprobaron que añadiendo otra enzima se aceleraban las reacciones, aumentando la eficacia y reduciendo los subproductos.

“Al final, acabamos obteniendo justo el combustible que queríamos, sin productos residuales y con pérdidas de energía marginales. Obtuvimos un combustible limpio con la máxima eficiencia”, asegura Sam Cobb, primer autor del artículo de Nature Chemistry.

“Inspirarnos en la biología nos ayudará a desarrollar mejores sistemas de catalizadores sintéticos, que es lo que necesitamos si queremos implementar la electrólisis de COa gran escala”, subraya Cobb.

Potencial para la reducción de las emisiones de carbono.

Por su parte, Erwin Reisner, que ha dirigido la investigación, señala que “la electrólisis tiene un gran potencial para reducir las emisiones de carbono. En lugar de capturar y almacenar el CO2, lo que supone un consumo de energía increíble, hemos demostrado un nuevo concepto para capturar el carbono y hacer algo útil a partir de él de una manera eficiente”.

Los investigadores dicen que el secreto de una electrólisis de CO2 más eficaz reside en los catalizadores. “En los últimos años se han producido grandes mejoras en el desarrollo de catalizadores sintéticos, pero aún no alcanzan a las enzimas utilizadas en este trabajo”, afirman.

Tal y como señala Cobb, “una vez que se consiga fabricar mejores catalizadores, muchos de los problemas de la electrólisis del dióxido de carbono desaparearán”.

“En el futuro queremos utilizar lo que hemos aprendido para abordar algunos problemas complicados con los que estos sistemas de última generación tienen dificultades, como el uso de CO2 directamente del aire, ya que son condiciones en las que las propiedades de las enzimas como catalizadores ideales pueden ser una opción”, concluye el investigador.

Referencia:

Samuel J. Cobb et al. “Fast CO2 hydration kinetics impair heterogeneous but improve enzymatic CO2 reduction catalysis”, Nature Chemistry (febrero.2022)

Esther Edwardes et al. “Understanding the local chemical environment of bioelectrocatalysis”, PNAS (febrero 2022)

Últimas noticias

Diseñan un método rápido para analizar las propiedades saludables del comino negro

Un equipo de investigación del Instituto de Agricultura Sostenible de Córdoba ha validado un sistema para estudiar semillas enteras en segundos, sin productos químicos y con similar fiabilidad que las técnicas tradicionales. El avance acorta el proceso de selección necesario para obtener variedades con mayor contenido en compuestos saludables.

Sigue leyendo

Un nuevo método detecta de forma más precisa el glifosato y otros pesticidas en suelos de olivar

La investigación se ha publicado en la revista Environmental Pollution. El artículo detalla el rendimiento general del método evaluado a lo largo de un gran conjunto de muestras y cómo se detecta una mayor cantidad de glifosato en los suelos de manejo tradicional e intensivo. La nueva técnica permite una cuantificación precisa tanto del GLY como de compuestos relacionados como el ácido aminometilfosfónico (AMPA), resultante de su degradación. Para evaluar el rendimiento del método se utilizaron alrededor de 800 muestras de suelo de olivar de la cuenca mediterránea bajo diferentes sistemas de manejo del suelo, el tradicional, el intensivo y el ecológico.

Sigue leyendo

Ir al contenido