Fotografía ilustrativa del artículo
| 29 Sep 2021

Estudian cómo reaccionan las plantas ante el estrés

Un estudio desarrollado en la Universidad de Sevilla y liderado por el investigador Emilio Gutiérrez, del departamento de Bioquímica vegetal y biología molecular, ha arrojado nuevos datos para entender cómo las plantas gestionan sus situaciones de estrés. La capacidad que tienen estos seres vivos de adaptarse a diferentes condiciones adversas determina, en gran medida, su supervivencia. Por ello, entender como son capaces de responder y hacer frente a estas condiciones de estrés es crucial para diseñar aproximaciones biotecnológicas que permitan minimizar las pérdidas económicas en la agricultura derivadas de un clima cada vez más cambiante.

Un estudio desarrollado en la Universidad de Sevilla y liderado por el investigador Emilio Gutiérrez, del departamento de Bioquímica vegetal y biología molecular, ha arrojado nuevos datos para entender cómo las plantas gestionan sus situaciones de estrés. La capacidad que tienen estos seres vivos de adaptarse a diferentes condiciones adversas determina, en gran medida, su supervivencia. Por ello, entender como son capaces de responder y hacer frente a estas condiciones de estrés es crucial para diseñar aproximaciones biotecnológicas que permitan minimizar las pérdidas económicas en la agricultura derivadas de un clima cada vez más cambiante.

Unas ramas asoman de la arena del desierto, un claro ejemplo de supervivencia vegetal.  

A nivel celular, uno de los primeros eventos que ocurre tras la percepción de la señal de estrés es la formación de unos complejos citoplasmáticos compuestos por ARN y proteínas conocidos como gránulos de estrés. La formación de estos complejos se produce como un mecanismo de defensa para promover la supervivencia celular. Aunque la función de los gránulos de estrés está muy estudiada en mamíferos, en plantas se desconoce el papel que desempeñan. En un trabajo publicado en el año 2015 en la revista The Plant Cell se encontró que la proteína TSN actúa como nexo conector entre el ensamblaje de los gránulos de estrés y la resistencia vegetal. Sin embargo, el mecanismo molecular a través del cual la proteína TSN desempeñaba esta función se desconoce.

Recientemente, el investigador de la US Emilio Gutiérrez ha descubierto que TSN actúan como una proteína de andamio reclutando, a través de una región altamente desordenada, a numerosos componentes proteicos, entre los que se encuentran proteínas previamente localizadas en los gránulos de estrés en otros modelos de estudio. Además, en el estudio se vio que el papel de andamio de TSN es crucial para la arquitectura y función de los gránulos de estrés. Entre los componentes específicos de plantas identificados se encontró a la quinasa SnRK1, un sensor central en la respuesta celular a situaciones de estrés ambiental y nutricional. En el estudio se demuestra que tanto la localización de SnRK1 en los gránulos de estrés como su interacción con TSN son cruciales para su activación. La activación de SnRK1 podría poner en marcha los mecanismos moleculares de respuesta a la situación de estrés impuesta, permitiendo así la supervivencia celular y por lo tanto del organismo. El trabajo muestra por primera vez como la formación de los gránulos de estrés interfiere en la señalización inducida por SnRK1, una de las vías celulares más estudiadas en eucariotas.

El estudio se ha realizado con fondos del European Research Council (programa Marie Curie Individual fellowships), del Ministerio de Ciencia e Innovación (programa Juan de la Cierva Incorporación) y del Plan Propio de Investigación de la Universidad de Sevilla y supone el inicio de una nueva línea de investigación liderada por el profesor Emilio Gutiérrez Beltrán y que recientemente ha sido financiada por el Ministerio de Ciencia e Innovación.

Referencia bibliográfica:

Tudor staphylococcal nuclease is a docking platform for stress granule components and is essential for SnRK1 activation in Arabidopsis; Emilio Gutierrez-Beltran, Pernilla H Elander, Kerstin Dalman, Guy W Dayhoff II, Panagiotis N Moschou, Vladimir N Uversky, Jose L Crespo, Peter V Bozhkov; The EMBO Journal (2021) 40: e105043.

Últimas noticias

Comprueban que los microplásticos modifican la biodiversidad bacteriana en suelos agrícolas

Un equipo de investigación de las universidades de Almería y Politécnica de Cartagena ha establecido por primera vez en la agricultura mediterránea que la presencia de este tipo de residuos, así como los restos de pesticidas, alteran las comunidades de hongos y bacterias en los ecosistemas de agricultura con acolchado plástico. Esto puede afectar de forma negativa a propiedades del suelo, como su salud y fertilidad, entre otras.

Sigue leyendo

Logran controlar la enfermedad que amenaza las poblaciones de anfibios en todo el mundo

Investigadores del Museo Nacional de Ciencias Naturales MNCN y el Instituto Mixto de Investigación en Biodiversidad (IMIB), ambos del CSIC han liderado esta investigación que se publica en Scientific Reports y que detalla cómo tratar los cuerpos de agua donde se reproducen los anfibios.

Sigue leyendo